
Optical potentials in algebraic scattering theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 1015

(http://iopscience.iop.org/0305-4470/32/6/013)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 07:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 1015–1034. Printed in the UK PII: S0305-4470(99)96507-1

Optical potentials in algebraic scattering theory

Péter Ĺevay
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Abstract. Using the theory of induced representations new realizations for the Lie algebras of the
groupsSO(2, 1), SO(2, 2), SO(3, 2) are found. The eigenvalue problem of the Casimir operators
yield Schr̈odinger equations with non-Hermitian interaction terms (i.e. optical potentials). For the
groupSO(2, 2) we have a two-parameter family of (matrix-valued) potentials containing terms of
Pöschl–Teller and Gendenshtein type. We calculate theS-matrices for special values of this two-
parameter family. In particular we also include a derivation of theS-matrix for thetwo-dimensional
scattering problem on acomplexGendenshtein potential. The canonically transformed realization
results in a non-local optical potential.

1. Introduction

During the past two decades spectrum generating algebras and dynamic symmetries proved to
be valuable theoretical tools for the study of bound-state and scattering problems. The earliest
applications of this kind included the study of collective states in nuclei, and the rotations
and vibrations of molecules. More recently, with the advent of algebraic scattering theory
(AST), dynamic symmetries of scattering problems have been extensively used to describe
heavy ion reactions. (For a brief review on dynamic symmetries and their applications to
scattering problems see the paper by Iachello in [1] and references therein.) The main theme
in these investigations is the determination of the interaction term governing the scattering
process compatible with the algebraicS-matrix fixed by the mathematical structure of the
non-compactdynamic symmetry groupG. In particular theS-matrix corresponding to the
groupSO(3, 2) turned out to be suitable for the description of the observed experimental data
in heavy ion reactions [2]. In order to know more about the origin of such symmetries for
these systems, it is important to find new coordinate realizations of the possible symmetry
groupsG. The desirable realizations are those which can account for the basic properties of
the interaction known from experiments. These properties can be described by interaction
terms which are of the form of an energy- and spin-dependent multichannel, non-local optical
potential of modified Coulomb type.

The purpose of the present paper is to report on the existence of non-standard realizations
found for the Lie algebras of the groupsSO(2, 1), SO(2, 2), SO(3, 2) capable of achieving
this goal. The possibility of using such techniques was announced in [3], and further developed
in a series of papers [4–7]. In [3] we explained the meaning of non-standard realizations using
the theory of induced representations. The basic idea was to choose a finite-dimensionalmatrix
representationof acompactsubgroupH of G, and then use the inducing construction to arrive
at a realization ofg (the Lie algebra ofG) in terms ofmatrix-valued differential operators.
Employing the groupsSO(n, 1) in [5, 6] we have shown that using this method scattering
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problems including spin can naturally be described within the framework of AST. A further step
was made in [7], where we also managed to derivenon-localpotentials with modified Coulomb
behaviour for the groupSO(3, 1). In these papers the inducing subgroup wascompact
(SO(n)). In a recent paper (see our paper in [1]) we reported on the existence of a realization
for the groupSO(3, 2)we accidentally came across, yieldingnon-Hermitian interaction terms
(i.e. optical potentials). Such potentials, according to the optical model [8], describe energy
dissipation, hence they are used extensively, for example, in models of inelastic processes
of nuclear reactions. The important observation of this paper was, that such terms appeared
because in this case the inducing subgroup wasnon-compact. We conjectured that generally,
the presence ofnon-Hermitian interaction termsmight be traced back to the choice of afinite-
dimensional(hencenon-unitary) inducing representation of the non-compact subgroup. In
this paper, by considering the groupsSO(2, 1), SO(2, 2), SO(3, 2)we show that the presence
of optical potentials can really be traced back to the choice of finite-dimensional non-unitary
representations for the subgroupsSO(1, 1), SO(2, 1), andSO(3, 1) of the aforementioned
groups, and then inducing a representation for them.

We emphasize here that these representations and those found in this paper are known
in the mathematics literature. The explicit form of their generators, however, has not been
constructed. In [3] we showed that there exists an explicit construction for these matrix-
valued generators using the geometric properties of coset spacesG/H . Here, however, we
have found it more instructive to follow a different route, namely guessing the right form of
modification that has to be added to the realizations widely used in AST and then checking
the commutation relations. A guiding line for this pedestrian method is provided by the
simplestSO(2, 1)/SO(1, 1) case where the explicit method of [3] is easily applied, and the
basic patterns are clearly recognized. For the more complicated cases the equivalence with an
explicit construction will be justified in a subsequent publication.

The organization of this paper is as follows. In section 2 we investigate the simplest non-
compact group with a non-compact subgroup, namelySO(2, 1). In section 3 we generalize
our results forSO(2, 2) with the non-Abelian non-compact subgroupSO(2, 1). In these
sections we clarify the general structure of the matrix-valued realizations and their connection
to non-Hermitian interaction terms. The (matrix-valued) potentials contain terms of Pöschl–
Teller and Gendenshtein type. In section 4 we calculate theS-matrices for special cases
giving real or complex interaction terms. In section 5 a straightforward generalization of our
construction for the groupSO(3, 2) favoured by heavy ion physicists is given. Conclusions and
some comments are given in section 6. Here we also give some hints for obtaining non-local
optical potentials by the method of canonical transformations. In appendix A we discuss some
geometric properties of our modified generators using the language of the theory of induced
representations. As far as we know the calculation of theS-matrix for thetwo-dimensional
scattering problem on acomplexGendenshtein potential has not been given. We include this
derivation in appendix B.

2. A realization for SO(2, 1) using coordinates on the cosetSO(2, 1)/SO(1, 1)

In order to motivate our construction, we start with the simplest example of a representation
for a non-compact groupG induced by a representationD of anon-compactsubgroupH ofG.
Hence we chooseG = SO(2, 1) andH = SO(1, 1). According to [3] the generators of the
Lie algebraso(2, 1) we are searching for are matrix-valued differential operators, expressed
in terms of suitable coordinates on the coset spaceSO(2, 1)/SO(1, 1). Moreover, the matrix-
valued nature of the generators is fixed by a representation for the subgroupSO(1, 1). Since
this group is Abelian, we have a 1× 1 matrix, i.e. a number for this representation. Let us
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denote this number byq, i.e. we haveq ∈ R when the representation is unitary, but we also
allow the possibility for allowingq ∈ C [9] for non-unitary inducing representations.

2.1. The case with trivial inducing representation

First we consider the caseq = 0. In this case we have the usual differential operators
corresponding to the infinitesimal action ofSO(2, 1) on our coset which is isomorphic to the
one-sheet hyperboloid[9]. This is described by the constraintX1

2 + X2
2 − X3

2 = 1. Our
differential operators are then

L1 = −i

(
X2

∂

∂X3
+X3

∂

∂X2

)
L2 = i

(
X3

∂

∂X1
+X1

∂

∂X3

)
(2.1a)

L3 = −i

(
X1

∂

∂X2
−X2

∂

∂X1

)
. (2.1b)

A convenient coordinatization of our hyperboloid is given by

X1 = 1 +R2

1− R2
v1 X2 = 1 +R2

1− R2
v2 X3 = 2R

1− R2
(2.2)

with

v1 = cosχ v2 = cosχ v3 = −i
∂

∂χ
(2.3)

where we also introduced the operatorv3 which is needed later. TheSO(2, 1) invariant line
element ds2 = −dX2

1 − dX2
2 + dX2

3 in this case is

ds2 = 4

(1− R2)2
dR2 −

(
1 +R2

1− R2

)2

dχ2 = gµν dyµ dyν (2.4)

where(y1, y2) ≡ (R, χ). The generators (2.1) in terms of our new coordinates can be expressed
as

L1 = Kv2 +
2

1 +R2
Rv1v3 (2.5a)

L2 = −Kv1 +
2

1 +R2
Rv2v3 L3 = v3 (2.5b)

with K = 1
2(1− R2)P , P ≡ −i ∂

∂R

Using the (2.5) realization now we calculate the Casimir operatorC for SO(2, 1). The
result is

C(SO(2, 1)) = −L1
2 − L2

2 +L3
2 = 1√

g
∂µ(
√
ggµν∂ν). (2.6)

or explicitly after using a similarity transformationT (R) =
√

1−R2

1+R2

T −1C(SO(2, 1))T = 1

4
(1− R2)∂R(1− R2)∂R +

(
v2

3 −
1

4

)(
1− R2

1 +R2

)2

− 1

4
. (2.7)

Notice that the operatorK ≡ 1
2(1− R2)P generates anSO(1, 1) group, and the first term of

the Casimir is simply−K2 which can be regarded as anSO(1, 1) Casimir operator.
After employing the variable transformationR(r) = tanh r2 we get

T −1C(SO(2, 1))T = ∂r2 +
v2

3 − 1
4

coshr2
− 1

4
. (2.8)
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Acting with this Casimir operator on the states|j, v〉 wherev3|j, v〉 = v|j, v〉 andC|j, v〉 =
j (j +1)|j, v〉, and choosing the principal series of irreducible representations withj = − 1

2 +ik
we get a Schr̈odinger equation for aone-dimensionalscattering problem with the potential
−(v2 − 1

4)/ coshr2 which reproduces the well known result in [10].

2.2. Non-trivial inducing representation

However, we are more ambitious and we are interested in the cases whereq 6= 0, i.e. the
inducingSO(1, 1) representation is non-trivial. The task is now to find suitableq-dependent
modifications to the operators of (2.5). In other words, we have to find the infinitesimal
generators of the induced representation forSO(2, 1), induced by a representation ofSO(1, 1)
labelled byq. Based on the results of [3] the new modified generators satisfying theSO(2, 1)
commutation relations are

J1 = L1 + q
1− R2

1 +R2
v1 J2 = L2 + q

1− R2

1 +R2
v2 J3 = L3. (2.9a)

The explicit construction of these generators is similar to the one presented in [3] for the
groupSO(3) using the polar coordinates(θ, φ) for the cosetSO(3)/SO(2) (the two-sphere).
To obtain theSO(2, 1)/SO(1, 1) case we employ the similarity transformation einφ (gauge
transformation) to theSO(3)generators. By using the identificationn ≡ q, (θ, φ) ≡ (ir+π2 , χ)
in the relevant formulae of [3] we obtain the generators of (2.9a). Of course the minimal form of
modification (2.9a) can easily be guessed without any recourse to this construction. A further
discussion on the properties of the modification added toL is given in appendix A. Moreover,
for later purposes we rewrite (2.9a) as

J1 = Kv2 + fRv1(v3− qR) + qv1 J2 = −Kv1 + fRv2(v3− qR) + qv2 J3 = L3.

(2.9b)

wheref (R) ≡ 2
1+R2 .

We can now calculate the Casimir operatorC for our new realization. For theq = 0 case
we indicated that the quadratic CasimirC(SO(2, 1)) can be written as the Laplace–Beltrami
operator for an appropriately chosen metric. (See equations (2.4) and (2.6).) Based on this
result it is an interesting question whether it is possible to identify a similar structure for the
modified CasimirC(SO(2, 1)). Indeed one can prove that a formula similar to (2.6) is true for
C(SO(2, 1)). It is

C(SO(2, 1) = −J1
2 − J2

2 + J3
2 = 1√

g
(∂µ + iAµ)(

√
ggµν(∂ν + iAν)) + q2 (2.10)

where

Aµ =
(
AR

Aχ

)
=
(

0
2qR

R2 − 1

)
. (2.11)

It is shown in appendix A thatA acts like a vector potential, i.e. anso(1, 1)-valued gauge field.
Moreover, using the variabler instead ofR the one-formA = AR dR+Aχ dχ = −q sinhr dχ
is a monopole-like gauge field with pole strengthq.

Our next step is to derive the potential from our new realization. Using the same steps as
for theq = 0 case we get the potential

V (r) = −v
2 − q2 + 2qv sinhr − 1

4

coshr2 (2.12)

which is the so-called Gendenshtein potential discussed in [11]. Notice thatq can also be
complex, provided we chose a non-unitary representation for the inducingSO(1, 1) subgroup.
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Hence the (2.12) potential is a complex (optical) potential. In order to accommodate properly
this property of the interaction term we also have to choose theSO(2, 1) representation
content appropriately. Choosing a non-unitary representation withj = − 1

2 + ik with k ∈ C,
we will have a complex number fork2 = E. Solvable complex potentials have already
been investigated in the literature [12]. The use of non-unitary representations for non-
compact groups appeared first in [13]. Moreover, the reflection coefficient (S-matrix) can
be calculated [11]; we merely give the result:

R(k, v, q) =
(

cos(v − 1/2) sinhπq

coshπk
+ i

sin(v − 1/2) coshπq

sinhπk

)
T (k, v, q) (2.13a)

where

T (k, v, q) = 0(1/2− v − ik)0(1/2 +v − ik)0(1/2 + iq − ik)0(1/2− iq − ik)

0(−ik)0(1 + ik)02(1/2− ik)
. (2.13b)

3. A realization for SO(2, 2) using coordinates on the cosetSO(2, 2)/SO(2, 1)

Our next step is to repeat the constructions of the previous section for a non-compact group
with a non-compactnon-Abeliansubgroup. In this case we have the possibility of having a
finite-dimensional non-unitary matrix representationD as the inducing representation. The
simplest example of this kind is the choiceG = SO(2, 2) andH = SO(2, 1). We choose
a finite-dimensional matrix representation for the generators ofH = SO(2, 1). Since this
representation is non-unitary some of the generatorsSk, k = 1, 2, 3 are non-Hermitian
matricessatisfying the usualSO(2, 1) commutation relation, i.e. we have

[S1, S2] = −iS3 [S2, S3] = iS1 [S3, S1] = iS2. (3.1)

For later use we rename these generators as follows:(S1, S2, S3) ≡ (T1, T2, S).

3.1. Trivial inducing representation

We represent the three-dimensional coset spaceSO(2, 2)/SO(2, 1) as the setM = {Xa, a =
1, 2, 3, 4|−X2

1−X2
2 +X2

3 +X2
4 = 1} [9]. The generators ofSO(2, 2) are differential operators

corresponding to the action ofSO(2, 2) onM. These generators are

M1 = X2P3 +X3P2 M2 = −X1P3−X3P1 M3 = X1P2 −X2P1 (3.2a)

N1 = X1P4 +X4P1 N2 = X2P4 +X4P2 N3 = X3P4 −X4P3 (3.2b)

wherePa = −i∂a, a = 1, . . . ,4. The commutation relations are

[M1,M2] = −iM3 [M2,M3] = iM1 [M3,M1] = iM2 (3.3a)

[M1, N2] = −iN3 [M2, N3] = iN1 [M3, N1] = iN2 (3.3b)

[N1,M2] = −iN3 [N2,M3] = iN1 [N3,M1] = iN2

[N1, N2] = −iM3 [N2, N3] = iM1 [N3, N1] = iM2. (3.3c)

Since we have a three-dimensional coset we introduce the coordinatesyµ, µ = 1, 2, 3,
(y1, y2, y3) = (R1, R2, χ) by

X1 = 2

1− R2
R1 X2 = 2

1− R2
R2 X3 = 1 +R2

1− R2
v1 X4 = 1 +R2

1− R2
v2

(3.4)
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with v1, v2 defined as in (2.3). The use of the coordinatesR1, R2 shows that unlike in the
previous case (one-dimensional scattering problem withR being the relevant coordinate) we
expect atwo-dimensionalscattering problem. This fact is also suggested by the group chain
SO(2) ⊂ SO(2, 1) ⊂ SO(2, 2) whereSO(2) can be regarded as angular momentum in two
dimensions.

The line element in these coordinates is

ds2 = 4

(1− R2)2
dR2 −

(
1 +R2

1− R2

)2

dχ2 = gµν dyµ dyν (3.5)

whereR2 = R2
1 +R2

2. In terms of the coordinates(R1, R2, χ) theso(2, 2) generators have the
form

M = K ?v1− 2

1 +R2
R?v2v3 M3 = L (3.6a)

N = Kv2 +
2

1 +R2
Rv1v3 N3 = v3 (3.6b)

with

K = 1

2
(1 +R2)P− R(RP) L = R1P2 − R2P1 (3.7)

whereV = (V1, V2) denotes a two-component vector of operators andV? = (V2,−V1) is its
dual, i.e.V ?I = εIJ VJ , with ε12 = −ε21 = 1, P = (P1, P2) = (−i∂/∂R1,−i∂/∂R2).

It is important to notice at this point that the operators(K ?, L) generate anSO(2, 1)
algebra. These operators generate the infinitesimal action ofSO(2, 1) on the coset
SO(2, 1)/SO(2) which is thedouble-sheet hyperboloid−X2

1 − X2
2 + Z2 = 1 parametrized

asX = 2R/(1 − R2), Z = (1 + R2)/(1 − R2). It is instructive to compare this with the
results obtained for theone-sheet hyperboloid, equations (2.2) and (2.5). One can say that our
SO(2, 2) algebra is built up by using the generators(K ?, L) of anSO(2, 1) algebra.

Using the realization (3.6) one can calculate the Casimir operators

C(SO(2, 2)) = −M2
1 −M2

2 +M2
3 −N2

1 −N2
2 +N2

3 (3.8a)

C ′(SO(2, 2)) = −M1N1−M2N2 +M3N3. (3.8b)

Notice thatso(2, 2) is a rank-two Lie algebra, hence it hastwo independent Casimir operators.
However, for the realization (3.6) a calculation shows thatC ′ = 0, andC can be expressed in
the form (2.6) in terms of the Laplace–Beltrami operator ofM (nowµ, ν = 1, 2, 3 and the
metricgµν is obtained from (3.5)). Explicitly we have

C(SO(2, 2)) = C(SO(2, 1)) +
1− R2

1 +R2
R∂R +

(
1− R2

1 +R2

)2

v2
3 (3.9a)

C(SO(2, 1)) = 1

4
(1− R2)2

(
∂2
R +

1

R
∂R − L

2

R2

)
. (3.9b)

We notice that theSO(2, 1)Casimir operatorC(SO(2, 1) = −K 2+L2 appears in theSO(2, 2)
Casimir. This can be traced back to theso(2, 1) algebraic structure sitting inside ourso(2, 2)
algebra. (See the presence ofK andL in (3.6).)

Using the same similarity transformation as in (2.7) we get

T −1C(SO(2, 2))T = C(SO(2, 1)) + (v2
3 − 1

4)

(
1− R2

1 +R2

)2

− 3

4
. (3.10)
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After the usual change of variableR(r) = tanh r2 we get

T −1C(SO(2, 2))T = ∂r2 +
v3

2 − 1
4

cosh2 r2
− L

2 − 1
4

sinh2 r
2

− 1. (3.11)

Acting with this Casimir operator on the states|ω,m, v〉wherev3|ω,m, v〉 = v|ω,m, v〉,
L|ω,m, v〉 = m|ω,m, v〉, andC|ω,m, v〉 = ω(ω + 2)|ω,m, v〉, and choosing the principal
series of irreducible representations withω = −1 + ik we get a Schr̈odinger equation for a
two-dimensionalscattering problem with the potential

−m
2

r2
+
m2 − 1

4

sinh2 r
2

− v2 − 1
4

cosh2 r
2

in agreement with a similar result in [14].

3.2. Non-trivial inducing representations

Now we come to the point of modifying the generators (3.6), by adding matrix-valued
modifications to them. For this purpose we use the finite-dimensional (non-Hermitian)
matrix realization (3.1). Our construction is based on the observation thatan so(2, 1)
algebra sits inside the realization (3.6) which is realized in terms of coordinates on the coset
SO(2, 1)/SO(2). Indeed, we know how to modifyK andL from [4]. The result in terms of
our coordinates(R1, R2) is

J = L + S I = K − R?S (3.12)

where we take the matrixS to be equal toS3 of (3.1). One can check that theso(2, 1)
commutation relations are satisfied. Now we search for a modification of the realization in
(3.6) by replacingK andL by I andJ and adding suitable overall modifications toM andN.
N3 is not modified.

It is instructive at this point to recall the results of the previous chapter. Indeed this
SO(2, 1)/SO(1, 1) case will be the archetypical example for what follows. According to (2.5)
and (2.9) the generatorL3 = v3 was not modified. Moreover, the generator of anSO(1, 1)
algebraK was also present in (2.5). There we did not have to modify the termKv2 (Kv1),
since there was no proper compact Lie subgroup ofSO(1, 1) to start the inducing construction
with. The modification we used there (containing the multiplying factorsv1 (v2) was written
in the form (2.9b).

If we follow this prescription, it is sensible to employ the choice

M = I ?v1− f (R)R?v2(v3− TR)− T?v2 M3 = J = L + S (3.13a)

N = Iv2 + f (R)Rv1(v3− TR) + Tv1 N3 = v3 (3.13b)

whereM = (M1,M2), N = (N1,N2), andf (R) = 2
1+R2 as usual. A straightforward

but tedious calculation shows that these generators indeed satisfy the (3.3) commutation
relations, hence they form a matrix-valued realization of theso(2, 2) algebra. Moreover,
by construction this representation is the induced representation induced by the non-unitary
matrix representation of theSO(2, 1) subgroup.

3.3. The scattering problem for a special choice of the inducing representation

Now the next step is the calculation of the Casimir operators for our realization (3.13), i.e.

C(SO(2, 2)) = −M2
1 −M2

2 +M2
3 −N 2

1 −N 2
2 +N 2

3 (3.14a)

C′(SO(2, 2)) = −M1N1−M2N2 +M3N3. (3.14b)
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C(SO(2, 2)) = C(SO(2, 1)) +
1− R2

1 +R2
R∂R + 2f (RT(v3− RT)) + (Rf )2(v3− RT)2

(3.15a)

C′(SO(2, 2)) = K1T2 −K2T1 +L(RT) +
1− R2

1 +R2
S(v3− RT) (3.15b)

where

C(SO(2, 1)) = −I 2
1 − I 2

2 + J 2 = C(SO(2, 1)) + 1
2(1− R2)(1/2 + 2LS) (3.16)

and we used equations (3.7), (3.9b) and (3.12) withf (R) = 2
1+R2 .

In this paper we specialize merely to the simplest non-Hermitian realization of (3.1), hence
we take

T1 = − i

2
σ2 T2 = i

2
σ1 S = 1

2
σ3. (3.17)

Employing (3.17), and then using the usual similarity transformation (2.7) we get

T −1C(SO(2, 2))T = C(SO(2, 1))− 2σ3(σR)
1− R2

1 +R22v3 +

(
1− R2

1 +R2

)2

v2
3 −

1

2
(3.18a)

T −1C′(SO(2, 2))T = i

4
(1− R2)(σP) +

1

4
(σR) +

1

2
σ3v3

1− R2

1 +R2
(3.18b)

whereσP = σ1P1 + σ2P2, andσR = σ1R1 + σ2R2.
In the realization (3.17) there exists an important relation betweenC andC′, namely

(2C′(SO(2, 2)))2 = C(SO(2, 2)) + 3
4 (3.19)

as can be proved using the similar formula

(2D(SO(2, 1)))2 = C(SO(2, 1)) + 1
4 (3.20)

whereD ≡ 1
4i(1− R2)(σP) + 1

4(σR).
Now, following [6], we show that (3.20) fixes the representation content of the scattering

states. The irreducible representations ofSO(2, 2) capable of characterizing scattering states
are classified by the pair(j0, j1), wherej0 = 0, 1

2, 1,
3
2, . . ., andj1 = ik, k ∈ R+

0. According
to AST scattering states are labelled as|j0, j1〉. The action of the Casimir operators on this
base [9] is

C|j0, j1〉 = (j0
2 + j1

2 − 1)|j0, j1〉 (3.21a)

C′|j0, j1〉 = j0j1|j0, j1〉. (3.21b)

Using equations (3.19) we get the relation(j2
0 − 1

4)(j
2
1 − 1

4) = 0 so we can single out the
states(± 1

2, ik). Moreover relation (3.19) is very important since we merely have to deal with a
first-order differential operatorwhen we are trying to simplify our problem. Our Hamiltonian
(which turns out to beC + 3

4) is simply four times the square of this operator.
Let us try to simplify (3.18b). Using the coordinate transformationR(r) = tanh r2 followed

by a further similarity transformationS(r) = (sinhr)−1/2 we get

2(T S)−1C′(SO(2, 2))(T S) = σn
(
∂r − K

sinhr

)
+ σ3

v3

coshr
(3.22)

whereK = 1
2 +σ3L, n = R/R is the unit vector in theR direction. Important relations satisfied

by these quantities are{K,σn} = 0, {σ3,σn} = 0 where{ , } is the anticommutator. Using
these relations one can quickly see thatC′ is not Hermitian, hencek is a complex number.



Optical potentials from group theory 1023

Since the operatorsJ andv3 are commuting with both of the Casimir operators and among
themselves we can characterize the scattering states (3.21) further as

J |1/2, k, j, v,±〉 = j |1/2, k, j, v,±〉 v3|1/2, k, j, v,±〉 = v|1/2, k, j, v,±〉 (3.23)

where± refers to the two-component nature of the state vector corresponding to the cases
m = j ∓ 1/2, respectively. The action of the operatorM on these states is

K|1/2, k, j, v,±〉 = ±j |1/2, k, j, v,±〉. (3.24)

Acting with (3.22) on

ψ1/2,k,j,v,±(r, ϕ, χ) ≡ 〈r, ϕ, χ |1/2, k, j, v,±〉 =
(
Fk,j,v,+(r)ei(j− 1

2 )ϕeivχ

Fk,j,v,−(r)ei(j+ 1
2 )ϕeivχ

)
(3.25)

one can easily check that equations (3.23) and (3.24) are satisfied. Moreover, according to
(3.21b) we have to also satisfy equation 2(T S)−1C′T Sψk,... = ikψk,..., which by virtue of
(3.22) yields the following set of radial equations for the unknown functionsF±(r):

v

coshr
∂r +

j

sinhr

∂r − j

sinhr
− v

coshr

( Fk,j,v,+(r)
Fk,j,v,−(r)

)
= ik

(
Fk,j,v,+(r)

Fk,j,v,−(r)

)
(3.26)

where we have used the special formσ1 cosϕ +σ2 sinϕ of the operatorσn when acting on the
corresponding states.

Using the special form of the matrix 2(T S)−1C′(T S) on the left-hand side of (3.26), we
can easily calculate its square, which according to (3.19) is justC + 3

4 with the eigenvalue−k2.
Since it is−1× the scattering energy,−(C + 3

4) is just the scattering Hamiltonian. Calculating
the square and employing a further similarity transformationQ(r) = 1/

√
r, we obtain the

following radial Schr̈odinger equation:[(
d2

dr2
+

1

r

d

dr
− m

2

r2
+ k2

)
δαβ − V j,vαβ (r)

]
1√
r
Fk,j,v,α = 0 (3.27)

with the matrix-valued potential

V j,v(r) = −m
2 − 1/4

r2
+
j2 + jσ3 coshr

sinh2 r
− v

2 − ivσ2 sinhr

cosh2 r
(3.28)

where the matrix indiciesα ∈ {±} correspond to the channelsj = m∓ 1/2. The interaction
term obtained is non-Hermitian, hence it represents an optical potential. Moreover, as discussed
previously,k2 is complex.

4. Solutions of the scattering problem in special cases

Our task is to solve the Schrödinger equation (3.27) with the non-Hermitian interaction
term (3.28). In order to do this we use the first-order equation (3.26) which is easier to
handle. Unfortunately we did not manage to find the general set of solutions for the whole two-
parameter family of potentials. We merely present results for the special cases(j, v) ≡ (j, 0),
and(j, v) ≡ (0, v). Sincej = m± 1/2m ∈ Z, for the second choice (j = 0) we have to use
representations of theso(2, 2) algebra wich are double-valued representations of the group
SO(2, 2) [10].
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4.1. The case withv = 0

For our first choice we setv = 0 in (3.26). The resulting coupled set of first-order equations
yields eigenfunctions of the Schrödinger equation (3.27) with the potential containing the term
j2±j coshr

sinh2r
, which is a well known example of a solvable potential. However, for later purposes

it is instructive to present an alternative solution to this problem using merely (3.26) which is
now of the form 0 ∂r +

j

sinhr

∂r − j

sinhr
0

( Fk,j,0,+(r)
Fk,j,0,−(r)

)
= ik

(
Fk,j,0,+(r)

Fk,j,0,−(r)

)
. (4.1)

Since the operator on the left-hand side is anti-Hermitian, its eigenvalue is purely imaginary,
hencek ∈ R. We write the unknown functionsF± in the form

Fk,j,0,±(r) =
√

sinhrFk,j,0,±(r) (4.2)

and change the variables asz(r) = coshr. The resulting coupled set of equations is 0
√
z2 − 1∂z +

z/2 + j√
z2 − 1√

z2 − 1∂z +
z/2− j√
z2 − 1

0

( Fk,j,0,+(z)Fk,j,0,−(z)

)
= ik

( Fk,j,0,+(z)
Fk,j,0,−(z)

)
.

(4.3)

These are precisely the equations [15] for the functionsBlmn(z) which are the generalizations
of Wigner’s d-functions for the groupSU(1, 1), with the choicel = −1/2 + ik, m = −j ,
n = ±1/2, i.e. using equation (4.2) we have

Fk,j,0,±(r) =
√

sinhrB−
1
2 +ik

−j,∓ 1
2
(coshr). (4.4)

Moreover, an analogous set of equations [16] coupling the functionsBlmn(z) andBlm±1n(z) can
also be used to show that the functions

F ′k,j,0,±(r) =
√

sinhrB−
1
2 +ik

± 1
2 j
(coshr) (4.5)

also satisfy (4.3). According to [15] the functionsBlmn(z) can be expressed in terms of the
hypergeometric function2F1 in the following form:

Blmn(z) =
(z− 1)

(n−m)
2 (z + 1)

(n+m)
2

2n0(n−m + 1)
2F1(l + n + 1, n− l; n−m + 1; 1

2(1− z)). (4.6)

According to this result and (4.4), the wavefunctions that are regular at the origin are

Fk,j,0,−(r) = 2j

0( 3
2 + j)

sinhr

(
tanh

r

2

)j
2F1(1 + ik, 1− ik, 3

2 + j,− sinh2 r
2) (4.7a)

Fk,j,0,+(r) = 2j

0( 1
2 + j)

(
tanh

r

2

)j
2F1(ik,−ik, 1

2 + j,− sinh2 r
2) (4.7b)

where we have chosenj > 1.
Using the asymptotic property of the hypergeometric function [17]

lim
|z|→∞ 2F1(a, b, c; z) = 0(c)

(
0(b − a)

0(b)0(c − a)(−z)
−a +

0(a − b)
0(a)0(c − b)(−z)

−b
)

(4.8)
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one can verify that

lim
r→∞Fk,j,0,±(r) ∼ e−ikr ∓ 2−4ik 0(2ik)

0(−2ik)

0(−ik)

0(ik)

0(1/2 + j − ik)

0(1/2 + j + ik)
eikr . (4.9)

After using the property0(2z) = 22z−1π−1/20(z)0(z+1/2) of gamma functions, theS-matrix
(having only diagonal elements in this case) is

Sj,0,±(k) = ± 0(1/2 + ik)

0(1/2− ik)

0(1/2 + j − ik)

0(1/2 + j + ik)
. (4.10)

4.2. The case withj = 0

Now we turn to the other special case, namely that with(j, v) ≡ (0, v). As we have already
noticed, the values of the parametersj,m, v in the interaction term (3.28) can be continued
to arbitrary real values. Such representations of the Lie algebra correspond to multivalued
reresentations of the Lie group. Puttingj = 0 in (3.26) we get the equation v

coshr
∂r

∂r − v

coshr

( Fk,0,v,+(r)
Fk,0,v,−(r)

)
= ik

(
Fk,0,v,+(r)

Fk,0,v,−(r)

)
. (4.11)

Here the matrix-valued differential operator isnot Hermitian: hence the eigenvaluek is
complex. In order to solve (4.11) we employ the variable transformationθ = ir + π/2,
hence cosθ = −i sinhr and sinθ = coshr, ∂/∂r = i∂/∂θ . Using the linear combinations

G± = F− ± iF+ (4.12)

equation (4.10) has the form 0 −∂θ − v

sinθ

∂θ − v

sinθ
0

( Gk,0,v,+(θ)

Gk,0,v,−(θ)

)
= ik

(
Gk,0,v,+(θ)

Gk,0,v,−(θ)

)
. (4.13)

Notice that the transformation (4.12) diagonalizes the interaction term

V (r) = −v
2 − ivσ2 sinhr

cosh2 r
the only term surviving after puttingj = 0 (m = ±1/2) in (3.28). In this basisV (r) has the
form

V (r) = −v
2 ± iv sinhr

cosh2 r
(4.14)

which is just the Gendenshtein potential of (2.12) withq = ± i
2 . However, in section 2 we had

−∞ < r +∞; now 06 r < +∞ wherer is a radial coordinate. Hence it follows that we also
have to satisfy the boundary conditionsG±(0) = 0. Moreover, just as in the(j, v) = (j, 0)
case the potentials of (4.14) are supersymmetric partners of one another, hence theS-matrices
(just as in equation (4.10)) should be the same up to a sign [11].

In order to find the solutions we introduce the variablew(θ) = cosθ and define

Gk,0,v,±(r) =
√

sinθGk,0,v,±(r) (4.15)

to obtain the equation 0
√

1− w2∂w +
−w/2− v√

1− w2

−
√

1− w2∂w +
w/2− v√

1− w2
0

( G+(w)

G−(w)

)
= ik

( G+(w)

G−(w)

)
(4.16)
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which is similar to (4.3). According to [15] the solutions to these equations can be expressed
in terms of the functionsP lmn(w). Using equation (4.15) it is easy to see that the solutions are

Gk,0,v,±(r) =
√

sinθP
− 1

2 +ik

v,± 1
2
(cosθ) =

√
coshrP

− 1
2 +ik

v,± 1
2
(−i sinhr) (4.17)

wherek is a complex number. The other pair of solutions (see (4.5) in this respect) is just

given by usingP
− 1

2 +ik

± 1
2 ,v

(−i sinhr) in equation (4.17). Using the properties of theP lmn functions

expressed in terms of the hypergeometric function, (a formula similar to (4.6) is valid), it is
not hard to see that our wavefunctions are linear combinations of the two linearly independent
solutions, i.e.

Gk,v,±(r) = Ev,±(r)
(
c1F

(
1/2 +v + ik, 1/2 +v − ik, 1 +v ± 1/2, z(r)

)
+ c2z(r)

−v∓ 1
2F
(
1/2∓ 1/2 + ik, 1/2∓ 1/2− ik, 1− v ∓ 1/2, z(r)

))
(4.18)

where

z(r) = 1
2(1 + i sinhr) Ev,± = (coshr)

1
2 +v exp

(± i 1
2tan−1 sinhr

)
. (4.19)

We would like to choose the complex numbersc1 andc2 in a way to account for the boundary
conditionG±(0) = 0, and then calculate theS-matrix element from the asymptotic properties
of this function. This calculation was carried out in appendix B, we merely give the final result:

S0,v,±(k) = ±22ik 0(1/2 + ik)0((1/2 +v + ik)/2)0((3/2− v + ik)/2)

0(1/2− ik)0((1/2 +v − ik)/2)0((3/2− v − ik)/2)
. (4.20)

As we have already remarked, the results for the SUSY partner potentials are the same up to
a minus sign. Note, however, thatk in this formula iscomplex.

5. A realization of SO(3, 2) using coordinates on the cosetSO(3, 2)/SO(3, 1)

In this section we present the realization found in our paper in [1] for the groupSO(3, 2).
As a first step as in section 3 we have to choose a finite-dimensional non-unitary matrix
representationD of the subgroupSO(3, 1). Having chosenD, we are given thesix matrices
S1, S2, S3 andT1, T2, T3 satisfying theso(3, 1) commutation relations

[Si, Sj ] = iεijkSk [Si, Tj ] = iεijkTk [Ti, Tj ] = −iεijkSk. (5.1)

By assumption the generatorsS are Hermitian and theT are anti-Hermitian, hence we have a
non-unitary representation.

5.1. Trivial inducing representation

We represent thefour-dimensional coset spaceSO(3, 2)/SO(3, 1) as

{Xa, , a = 1, . . . ,5| −X2
1 −X2

2 −X2
3 +X2

4 +X2
5 = 1}.

TheSO(3, 2) invariant line element is

ds2 = −dX2
1 − dX2

2 − dX2
3 + dX2

4 + dX2
5 − X2 +X2

4 +X2
5 = 1.

We can obtain the usualSO(3, 2) generators corresponding to infinitesimal transformations
preserving this line element in the usual way. The result is

εjkmLm = XjPk −XkPj V = X4P5−X5P4 (5.2a)

Bj = XjP4 +X4Pj Dj = XjP5 +X5Pj (5.2b)
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wherePa = −i∂a, a = 1, . . . ,5. The commutation relations are

[Lm,Ln] = iεmnkLk [Lm,Bn] = iεmnkBk [Lm,Dn] = iεmnkDk (5.3a)

[V,Bn] = iDn [V,Dn] = −iBn (5.3b)

[Bm,Bn] = [Dm,Dn] = −iεmnkLk [Bm,Dn] = −iδmn. (5.3c)

On our four-dimensional coset we introduce the usual stereographically projected
coordinates (see also equation (3.4))

X = 2

1− R2
R X4 = 1 +R2

1− R2
v1 X5 = 1 +R2

1− R2
v2 (5.4)

to obtain the line element identical in form to (3.5). Nowµ, ν = 1, . . . ,4, (y1, y2, y3, y4) ≡
(R1, R2, R3, χ), andv1 = cosχ , v2 = sinχ as usual. TheSO(3, 2) generators in these
coordinates are

L = R × P V = v3 (5.5a)

B = Kv1− 2

1 +R2
Rv2v3 D = Kv2 +

2

1 +R2
Rv1v3 (5.5b)

whereK has the same form as in (3.7); however, now just likeL it has three components.
Moreover, as in section 3, the six operatorsL andK generate anSO(3, 1) algebra. Notice
also thatL andK are related to the angular momentum operator and the Runge–Lenz vector
after a canonical and a similarity transformation [7]. Again as in section 3 we can say that our
SO(3, 2) algebra is built up by using the generators(L ,K ) of anSO(3, 1) algebra.

One can calculate the quadratic Casimir, and find

C(SO(3, 2)) = L2 + V 2 − B2 − D2 = 1√
g
∂µ(
√
ggµν∂ν). (5.6)

Moreover, by employing the similarity transformation (2.7)T (R) =
√

1−R2

1+R2 one can relate our

SO(3, 2) Casimir to theSO(3, 1) CasimirC(SO(3, 1)) = L2 − K 2 as follows:

T −1C(SO(3, 2))T = C(SO(3, 1)) +

(
v2

3 −
1

4

)(
1− R2

1 +R2

)2

− 5

4
. (5.7)

By choosing scattering states for which the eigenvalue of the operatorv3 (the potential strength
parameter) is1

2 the SO(3, 2) Casimir describes all the scattering phenomena obtained for
theSO(3, 1) Casimir (for example, Coulomb scattering after a canonical transformation see
[7, 18]). A great advantage of this geometrically motivated construction is that it substantially
simplifies the analysis as given in [18].

Acting with this Casimir operator on the states|ω, l,m, v〉 where V |ω,m, v〉 =
v|ω,m, v〉, L2|ω, l,m, v〉 = l(l + 1)|ω, l,m, v〉, andL3|ω, l,m, v〉 = m|ω, l,m, v〉, and
C|ω, l,m, v〉 = ω(ω + 3)|ω, l,m, v〉, and choosing the principal series of irreducible
representations withω = −3/2 + ik, we get a Schr̈odinger equation for athree-dimensional
scattering problem with the potential

− l(l + 1)

r2
+
l(l + 1)

sinh2 r
2

− v2 − 1
4

cosh2 r
2

in agreement with [18].
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5.2. Non-trivial inducing representations

Now we have to modify our (5.5) realization by adding matrix-valued modifications to the
generators. For this purpose we use the observation (motivated by results of the previous
sections) that anso(3, 1) algebra spanned by(L ,K ) sits inside the realization (5.5). Moreover,
we know from [7] how to modifyL andK :

J = L + S M = K + S× R (5.8)

with the HermitianSsatisfying the first commutator of (5.1). One can check that these operators
satisfy

[Ji, Jj ] = iεijkJk [Ji,Mj ] = iεijkMk [Mi,Mj ] = −iεijkJk (5.9)

i.e. the commutation relations of theso(3, 1) algebra.
Our task is to find a similar realization for the Lie algebra ofSO(3, 2). Looking at the

(5.5) SO(3, 2) realization one can see that a straightforward way to modify it is to replace
the SO(3, 1) generators(L ,K ) by the modified ones(J,M ), and to add possible further
modifications to them. The commutation relations that are to be satisfied are

[Jm, Jn] = iεmnkJk [Jm,Bn] = iεmnkBk [Jm,Dn] = iεmnkDk (5.10a)

[V,Bn] = iDn [V,Dn] = −iBn (5.10b)

[Bm,Bn] = [Dm,Dn] = −iεmnkJk [Bm,Dn] = −iδmn. (5.10c)

Motivated by the results of section 3, one can show that the new generators are

J = L + S V = v3 (5.11a)

B = v1M − v2f (R)R(v3− TR)− Tv2 (5.11b)

D = v2M + v1f (R)R(v3− TR) + Tv1 (5.11c)

wheref (R) is defined as in (3.13). Notice again thatV was not modified.
The simplest choice forD used in [1] is

Sj ≡
( 1

2σj 0

0 1
2σj

)
Tj ≡

(
0 1

2iσj
1
2iσj 0

)
. (5.12)

There we calculated the Casimir operators for the realization (5.11), and the Schrödinger
equation for the corresponding scattering problem was also derived. Since the details can be
found in that paper, and the calculation follows the same steps as in section 3 for theSO(2, 2)
case, we merely give the result for the interaction term:

Vαβ ≡
−l(l + 1)

r2
+
l(l + 1)

sinh2r
− κ

2cosh2 r2
− v2

cosh2r
−iv

sinhr

cosh2r

−iv
sinhr

cosh2r

−l(l + 1)

r2
+
l(l + 1)

sinh2r
+

κ

2cosh2 r2
− v2

cosh2r


(5.13)

whereκ = j + 1
2. It is easy to show that (5.13) can be rewritten in the form

V κ,v(r) = − l(l + 1)

r2
+
κ2 + κσ3 coshr

sinh2 r
− v

2 + ivσ1 sinhr

cosh2 r
(5.14)

which is of the form (3.28). This non-Hermitian interaction term yields the same type of radial
Schr̈odinger equation. The discussion of the special solutions using section 4 is trivial.



Optical potentials from group theory 1029

6. Conclusions and comments

In this paper we have constructed matrix-valued realizations for the non-compact groups
SO(2, 1),SO(2, 2)andSO(3, 2) frequently used in algebraic scattering theory (AST). Finding
new realizations for the groupSO(3, 2) is especially important, as this is a candidate for
describing heavy ion reactions. Such reactions are described by non-local, spin-dependent,
optical (complex) potentials. Previously it was demonstrated that non-local, spin-dependent
potentials can indeed be obtained using AST. In our study we have shown that optical potentials
are also amenable to an algebraic description.

Our basic tool was the theory of induced representations. According to this the geometry
of the scattering problem is expressed in terms of coordinates on a coset spaceG/H . The
vector-valued complex wavefunctionsψ : G/H → Cn (more precisely wave sections of a
vector bundle overG/H ) carry ann-dimensional matrix representationD ofH . The modified
matrix-valued symmetry generators ofG acting on these wavefunctions are the generators of
the induced representation forG induced byD. WhenH is a non-compact group,D can
be chosen to be a non-unitary representation. Some of the generators in this case are a non-
Hermitian matrix. Defining some suitable combinations of the Casimir operators ofG to be
the HamiltonianH of some scattering problem will yield a non-Hermitian interaction term,
i.e. optical potentials.

In this paper we illustrated this method by choosingG to beSO(2, 1), SO(2, 2) and
SO(3, 2) with H being SO(1, 1), SO(2, 1) and SO(3, 1), respectively. We constructed
the generators and calculated the Casimir operators. By extracting the interaction term we
demonstrated that these are indeed complex potentials. These turned out to be of 2×2 matrices
containing potentials of P̈oschl–Teller and Gendenshtein type. For special cases we calculated
the correspondingS-matrices.

It is quite natural to generalize this construction for the groupsSO(n, 2). However, our
SO(3, 2) example clearly exhibits the basic structure of the interaction matrix. (Compare
equations (3.28) and (5.14).) Based on this observation we can say that provided we choose
D to be the finite-dimensional spinor representation ofSO(n, 1) (compare equations (3.17)
and (5.12)), we obtain the same structure for the interaction term. Of course we can try finite-
dimensional matrix representations forSO(n, 1) other than those based on Dirac gamma
matrices (Clifford algebras). Such realizations would describe scattering processes with
higher spin. These potentials might exhibit interesting new features (e.g., the appearance
of a non-central interaction); however, according to our parametrization of our coset, the radial
dependence will still be in terms of Pöschl–Teller and Gendenshtein-like potentials.

The question then arises: how does one obtain potentials of other types? One possibility
is to choose other parametrizations for our cosets. More importantly, there is another method
for obtaining new potentials from the expression of the Casimir operators. This is the method
of canonical transformations [7, 18]. One can quickly illustrate the usefulness of this method
by choosingG = SO(2, 2) and looking at the expression (3.18b) for its Casimir operatorC′.
By a suitable similarity transformation depending only onR one can transform this to the form

C̃ ′ = i

4
(σP)(1− R2) +

1

2
σ3v3

1− R2

1 +R2
. (6.1)

Now we employ the canonical transformation

R→− 1√
2E

P P→
√

2ER (6.2)



1030 P Lévay

leaving the commutation relations intact, hence arriving at the expression

2C̃ ′KAN =
(

i√
2E
R(σn) + σ3v3(E + P 2/2)−1

)
(E − P 2/2) (6.3)

whereE is the eigenvalue (the scattering energy, possibly complex) of an as yet unknown
Hamiltonian that commutes with the generators ofSO(2, 2) obtained from (3.13) by using
(6.2). From (6.3) we identify the termE − P 2/2 with the potentialU , and after rearranging
terms we get

−2i
√

2E(σn)C̃ ′KAN =
(
R +
√

2E(σn?)v(E + P 2/2)−1
)
U (6.4)

wheren? is the dual of the two-component vectorn (see equation (3.6)), and we used the
eigenvalue ofv3 by evaluating (6.4) on the corresponding eigensubspace. By calculating the
inverse of the operator standing in front ofU , one can express the interaction term formally.
In order to gain some insight we putv = 0 in (6.4). Then we have

U = −2i

√
2E

R
(σn)C̃ ′KAN. (6.5)

Let us recall equation (3.21b). We suppose that the Hamiltonian is some function ofC̃ ′, then
according to [7, 18] we rewrite (3.21b) as

C̃ ′| ± 1
2, f (k)〉 = ± 1

2if (k)| ± 1
2, f (k)〉. (6.6)

Choosingf (k) = Z1Z2e
2/k = Z1Z2e

2/
√

2E (the Sommerfeld parameter), and acting with
(6.5) on the scattering states defined by (6.6) with a similar reasoning then in [7] (notice that
C̃ ′ andσn for v = 0 are both parity odd operators, henceU should be parity even) we get

U(R) = ±Z1Z2e
2

R
(6.7)

i.e. the Coulomb potential. This result should not come as a surprise, since by settingv = 0
theSO(2, 2) symmetry of the problem was reduced to the groupSO(2, 1), which is known to
be the symmetry group of the two-dimensional Coulomb problem.

Forv 6= 0 one can try to solve the equation

± α
R
= (I − λK)U K ≡ (σn?)

1

R
(k2 + P 2)−1 (6.8)

whereλ ≡ −2kv, k = √2E ∈ C, andα ≡ Z1Z2e
2. Here equation (6.8) is sensible only

when acting on the eigenstates defined by (6.6). The formal solution of this equation is given
by expanding(I − λK)−1 in a power series inλ, i.e

U = ±(I − λK)−1 α

R
= ±α

∞∑
n=0

λnKn 1

R
. (6.9)

The question is, of course: under what circumstances is such a formal expansion legitimate?
Such issues will be addressed in a subsequent publication. Here we would merely like to point
out in closing that for smallv equation (6.9) results in the expression ((σn?) acts on the states
like (3.25) as the matrix−σ2)

±U = α

R
I + 2v

α

R

k

k2 + P 2

1

R
σ2 + · · · (6.10)

which is an energy-dependent two channel, non-local optical potential of modified Coulomb
type. Such algebraic potentials are the generalizations of the ones that can be found in [7, 18].
The non-local nature of the operator can be made manifest by representingK as an integral
operator with kernel defined by the Green function of the Helmholtz operator(P 2 +k2), k ∈ C
in twodimensions.



Optical potentials from group theory 1031

Acknowledgments

This work has been supported by the OTKA under Grant Nos. T017179 and T021228 and
by the DFGA/MTA under Contract No. 76/1995. The one month ENEA fellowship (Prot.
n. 4110) awarded in 8 July 1997 is gratefully acknowledged. The author would also like
to express his gratitude for the warm hospitality of Professor Alberto Ventura at the Energy
Department, ERG-Siec-DANU, Bologna, where part of this work was completed.

Appendix A. Properties of the modifiedSO(2, 1) generators

In this appendix we try to give some insight into the meaning of the modified generators of (2.9).
For this purpose we consider the vectorW with components(W1,W2,W3) = q 1−R2

1+R2 (v1, v2, 0)
modifying the original set of generators. Moreover, we write the generatorsLk, k = 1, 2, 3
in the formLk = g

µ

k Pµ, µ = 1, 2, with P1 = −i∂R andP2 = −i∂χ , where the functions
g
µ

k (R, χ) are defined appropriately. In this notation the modifiedSO(2, 1) generators can be
expressed asJk = Lk +Wk, k = 1, 2, 3.

From (2.10) it is obvious that up to the constantq2 the modification in the Casimir is
effected by the presence of the vector fieldAµ. Let us examine howAµ behaves under
an infinitesimalSO(2, 1) rotation generated by the operatorsL . The change inAµ is
LgAµ ≡ gνk ∂νAµ + (∂µgνk )Aν which is called theLie derivativeof Aµ. Using the explicit
form ofA from (2.11) one can prove that

LgkAµ = ∂µWk k = 1, 2, 3. (A.1)

The meaning of this equation is as follows. The vector fieldAµ is not invariant under the
kth infinitesimalSO(2, 1) transformations, but it is invariantup to a compensating gauge
transformation∂µWk (the gradient of a scalar function for eachk). Hence we have clarified
the meaning of theWk modifications.

According to the general theory of induced representations [3] we have a groupG, a
subgroupH and a finite-dimensional irreducible representationD for the subgroup. One then
considers the coset spaceG/H ; in our case it is the one-sheet hyperboloidSO(2, 1)/SO(1, 1).
Then one constructs the vector bundle with the base space beingG/H and the fibre being the
carrier space for the representationD which is a finite-dimensional vector space. One can
imagine this construction as attaching a copy of the representation space to each point inG/H .
We have to emphasize that this construction is local, in the sense that our vector bundle isnot the
Cartesian product ofG/H and our finite-dimensional vector space. The (local) sections of this
vector bundle are vector-valued wavefunctions carrying the representationD. In our case these
are one-component wavefunctions, sinceSO(1, 1) is Abelian. The induced representation is
defined by defining an action ofGon such sections (‘wavefunctions’), see [3] for details. On our
bundle we can naturally define a rule for comparing wavefunctions at different points ofG/H .
This rule defines aparallel transportfor the wavefunctions. For our case it is precisely the
vector potentialAµwhich defines this rule. Our modified symmetry generators turn out to be the
infinitesimal operators of the induced representation acting on wavefunctions. The difference
between these operators and the usual ones (L ) are compensating gauge transformations for
the gauge field defining the parallel transport (see equation (A.1)).
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Appendix B. Transformations of the wavefunction for the Gendenshtein potential

The wavefunction satisfying the Schrödinger equation with the Gendenshtein potential

V (r) = q2 − v2 − 2qv sinhr + 1
4

coshr2 . (B.1)

is the linear combination [11]

ψk,v,q(r) = Ev,q(r)
(
c1F(1/2 +v + ik, 1/2 +v − ik, 1 +v − iq, z(r))

+ c2z(r)
−v+iqF (1/2 + iq + ik, 1/2 + iq − ik, 1− v + iq, z(r))

)
(B.2)

where

z(r) = 1
2(1 + i sinhr) Ev,q = (coshr)

1
2 +v exp

(
q tan−1 sinhr

)
. (B.3)

We are particularly interested in the cases withq = ± i
2 . Since the potentials of these cases

are SUSY partners of each other, we setq = − i
2 . TheS-matrix of the other case is obtained

simply by multiplying by−1. In first case we have to consider the linear combination of two
hypergeometric functions in the form

8 = c1F1 + c2z
−v−1/2F2

≡ c1F(1/2 +v + ik, 1/2 +v − ik, 3/2 +v, z) + c2z
−v−1/2F(+ik,−ik, 1/2− v, z) (B.4)

which are just our functions also derived in (4.18). We would like to choose the complex
numbersc1 andc2 in such a way as to account for the boundary conditionψ(0) = 0. For this
purpose we apply the transformation formula [17]

(a − b)F (a, b, c, z) = aF(a + 1, b, c, z)− bF(a, b + 1, c, z) (B.5)

to arrive at the following form of our functions:

F1 = − i

2k

[
(1/2 +v + ik)F (3/2 +v + ik, 1/2 +v − ik, 3/2 +v, z)

− (1/2 +v − ik)F (1/2 +v + ik, 3/2 +v − ik, 3/2 +v, z)
]

(B.6a)

F2 = 1
2

[
F(1 + ik,−ik, 1/2− v, z) + F(ik, 1− ik, 1/2− v, z)]. (B.6b)

As a next step, we get rid of the variablez(r) = 1
2(1 + i sinhr) by transforming it into

w(r) ≡ 4z(r)(1− z(r)) = cosh2r using the expressions [17]

F(a, b, (a + b + 1)/2, z) = F(a/2, b/2, (a + b + 1)/2, 4z(1− z)) (B.7a)

F(a, 1− a, c, z) = (1− z)c−1F((c − a)/2, (c + a − 1)/2, c,4z(1− z)) (B.7b)

with the result

F1 = − i

2k

[
(1/2 +v + ik)F ((3/2 +v + ik)/2, (1/2 +v − ik)/2, 3/2 +v,w)

− (1/2 +v − ik)F ((1/2 +v + ik)/2, (3/2 +v − ik)/2, 3/2 +v,w)
]

(B.8a)

z−v−1/2F2 = 1
2(

1
2w)

−v−1/2
[
F((−1/2− v − ik)/2, (1/2− v + ik)/2, 1/2− v,w)

+F((1/2− v − ik)/2, (−1/2− v + ik)/2, 1/2− v,w)]. (B.8b)

We can transform these expressions further using the formula [17]

F(a, b, c, w) = 0(c)0(c − a − b)
0(c − a)0(c − b)F (a, b, a + b − c + 1, 1− w)

+ (1− w)c−a−b 0(c)0(a + b − c)
0(a)0(b)

F (c − a, c − b, c − a − b + 1, 1− w) (B.9)
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and then grouping similar terms employing the identity [17]

0(a, b, c,1− w) = wc−a−bF (c − a, c − b, c,1− w) (B.10)

hence arriving at the following formula for the function8 ≡ c1F1 + c2z
v−1/2F2:

8(r) = 81(r) + i sinhr(coshr)−2v−182(r) (B.11)

with

81 =
(
− i

k
c101 + 22vc203

)
F((3/2 +v + ik)/2, (1/2 +v − ik)/2, 1/2,−sinh2r)

+

(
i

k
c102 + 22vc204

)
×F((1/2 +v + ik)/2, (3/2 +v − ik)/2, 1/2,−sinh2r) (B.12a)

82 =
(
− i

k
c1�1 + 22vc2�3

)
F((3/2− v + ik)/2, (1/2− v − ik)/2, 3/2,−sinh2r)

+

(
i

k
c1�2 + 22vc2�4

)
F((1/2− v + ik)/2, (3/2− v − ik)/2, 3/2,−sinh2r)

≡ α1F1 + α2F2 (B.12b)

where

01(k, v) = 02(−k, v) = 0(3/2 +v)0(1/2)

0((3/2 +v − ik)/2)0((1/2 +v + ik)/2)
(B.13a)

03(k, v) = 04(−k, v) = 2(−1/2− v + ik)−101(k,−1− v) (B.13b)

�3(k, v) = �4(−k, v) = 0(1/2− v)0(−1/2)

0((−1/2− v − ik)/2)0((1/2− v + ik)/2)
(B.14a)

�1(k, v) = �2(−k, v) = 1
2(1/2 +v + ik)�3(k,−1− v). (B.14b)

SinceEv, 1
2 i(0) 6= 0, our wavefunction vanishes when8(r) does. This means that81(r)

in (B.11) must vanish, yielding the constraint

− i

k
c1(01− 02) + 22vc2(03 + 04) = 0 (B.15)

where we made use of the fact thatF(a, b, c,0) = 1. Then we are left with82, and the factors
multiplying the hypergeometric functions in (B.12b) are (82 = α1F1 + α2F2)

α1(k, v) = �1

01− 02
− �3

03 + 04
α2(k, v) = �2

02 − 01
− �4

03 + 04
. (B.16)

It is easy to check thatα2(k, v) = α1(−k, v), hence it is enough to calculateα1. A
straightforward calculation using equations (B.13), (B.14) shows that

α1(k, v) = (1/2 +v + ik)[(1−Q(k, v))−1− (1 +Q(−k,−v))−1] (B.17)

where

Q(k, v) = 0((3/2 +v + ik)/2)0((1/2 +v − ik)/2)

0((3/2 +v − ik)/2)0((1/2 +v + ik)/2)
. (B.18)

We will also need the ratioα1/α2, which turns out to be

α1(k, v)

α2(k, v)
= (−1)

1/2 +v + ik

1/2 +v − ik
. (B.19)
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The next step is to transform the functionsF1 andF2 in (B.12b), in order to extract their
asymptotic behaviour. For this purpose we refer to the formulae [17]

F(a, b, c,1− w) = w−aF (a, c − b, c, (w − 1)/w)

= w−bF (b, c − a, c, (w − 1)/w). (B.20)

Then for the functionsF1,2 we get the expressions

F1(k, v, r) = (coshr)−(1/2−v−ik)F ((1/2− v − ik)/2, (3/2 +v − ik)/2, 3/2, tanhr)

(B.21a)

F2(k, v, r) = (coshr)−(1/2−v+ik)F ((1/2− v + ik)/2, (3/2 +v + ik)/2, 3/2, tanhr).

(B.21b)

Finally, using these, we obtain the following form for our wavefunction:

ψk,v, 1
2 i(r) = Ev, 1

2 i(r)[α1(k, v)F1(k, v, r) + α2(k, v)F2(k, v, r)] (B.22)

where the corresponding quantities are defined by (B.3), (B.17)–(B.19) and (B.21). Asr →∞,
tanhr → 1: henceF(a, b, c, tanhr)→ 0(c)0(c−a−b)

0(c−a)0(c−b) [17]. Collecting everything, we get

ψk,v, 1
2 i → α1(k, v)A(k, v)2

−ikeikr + α2(k, v)A(−k, v)2ike−ikr (B.23)

where

A(k, v) = 20(1/2 + ik)0(3/2)

0((1/2 +v + ik)/2)0((3/2− v + ik)/2)
(1/2 +v + ik)−1. (B.24)

Now we can read off the reflection coefficentR which is related to theS-matrix asSv(k) =
−Rv(k). The final result is

Sv(k) = 22ik 0(1/2 + ik)0((1/2 +v + ik)/2)0((3/2− v + ik)/2)

0(1/2− ik)0((1/2 +v − ik)/2)0((3/2− v − ik)/2)
. (B.25)

Moreover, as we have already remarked, the result for the SUSY partner potential is the same
up to a minus sign.

References
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